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Abstract
We discuss a new class of identities between correlation functions which arise
from a local Z2 invariance of the partition function of the q-state Potts model
on general graphs or lattices. Their common feature is to relate the thermal
operators of the Potts model to some topological properties of the Fortuin–
Kasteleyn clusters. In particular, it turns out that any even correlation function
can be expressed in terms of observables which probe the linking properties of
these clusters. This generalizes a class of analogous relations recently found in
the Ising model.

PACS number: 0550

1. Introduction

One of the simplest and most studied models of statistical mechanics is the q-state Potts
model [1,2], which is the basic system symmetric under the permutation group of q elements.
It can be defined on any connected graph G associating with each vertex i = 1, 2, . . . , v(G)

the spin variable σi = 1, 2, . . . , q. Its partition function at temperature T = 1/β is taken to
be

ZG =
∑
{σ }

e−βH (1)

where H = − ∑
〈ij〉 δσiσj

with 〈ij〉 ranging over pairs of adjacent vertices in G.
A long-standing problem is how to characterize geometrically in this kind of model the

fluctuations near a critical point. Contrary to the naive expectation, the clusters made of
adjacent sites with aligned spins do not play an important role in this respect. A different
definition of cluster was proposed for the Ising model [3] and generalized to the q-state Potts
model [4]. These clusters are defined as adjacent sites with the same spin connected by bonds
with probability p = 1 − e−β . Within such a definition, these clusters behave correctly at the
critical point, in the sense that their radius and the density of the percolating cluster scale with
the correct critical exponents.
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The partition function (1) can be rewritten in terms of these clusters using the Fortuin–
Kasteleyn (FK) representation [5, 6]:

ZG(q, v) =
∑
G′⊆G

ve(G′)qk(G′) (2)

where v = p

1−p
= eβ − 1; the summation is over all spanning subgraphs of G, namely the

subgraphs made with all the vertices of G, i.e. with v(G′) = v(G); e(G′) is the number of edges
of G′, called active bonds, and k(G′) the number of connected components or FK clusters.
This formulation of the partition function, sometimes called a di-chromatic polynomial, enables
one to generalize q from positive integers to real and complex values. In particular q = 0
corresponds to the tree percolation problem and q = 1 is the random percolation problem.

In this paper we establish some new exact topological properties of these clusters. They
arise from a class of identities between correlation functions which are valid for any graphG and
come from the invariance of the partition function (1) with respect to a local Z2 transformation.
Their origin suggests we call them Ward identities (see section 2). Their common feature is to
relate the thermal operators of the Potts model to some linking properties of the FK clusters
and generalize a class of analogous relations recently found in the Ising model [7].

It turns out that any even correlation function can be expressed in terms of a new kind
of observable, which depend only on the closed circuits of these clusters (see section 3).
This suggests new, powerful methods to evaluate even correlators which can be easily
implemented in numerical experiments: let G′

1, G
′
2, . . . , G

′
i , . . . be a sequence of spanning

subgraphs in statistical equilibrium with the partition function (2), generated by any updating
algorithm. Deleting all the edges which do not belong to any circuit of G′

i produces a dramatic
simplification of the configuration with no information loss on thermal properties of the system.
In the simplified configurations the evaluation of the new kind of observable is a much easier
task. This leads to improved estimators of the thermal operators of this model.

2. Ward identities

An elementary derivation of the simplest of these identities is the following. Let � be any
edge of G. Denote by G+

� the spanning subgraphs containing � and by G−
� the others. Clearly

the set {G′} of all the spanning subgraphs may be written as the sum of two disjoint subsets
{G′} = {G+

� } ∪ {G−
� }. Denote by δ� the Z2 transformation on ZG(q, v) which deletes the edge

� from any subgraph of type G+
� and adds it to any subgraph of type G−

� . This is a symmetry
of the partition function, namely,

δ�[ZG(q, v)] = ZG(q, v) (3)

since
∑

G′⊆G = ∑
G+

�⊆G +
∑

G−
� ⊆G and δ� exchanges the two subsets {G+

� } ↔ {G−
� }. In

contrast, the two partial sums are not invariant, but their way of transforming under δ� can be
explicitly evaluated. We have, of course,

δ�[e(G±
� )] = e(G±

� ) ∓ 1. (4)

The action of δ� on the number of clusters k(G+
� ) depends on a topological property of �: if it

belongs to a circuit of G+
� , k is kept invariant

δ�[k(G+
� )] = k(G+

� ). (5)

We call the edges with this property black bonds [7]. If � does not belong to any closed circuit
of G+

� we have

δ�[k(G+
� )] = k(G+

� ) + 1 (6)
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and call it a grey bond or bridge. Using (4)–(6) we obtain4

δ�

[ ∑
G+

�⊆G

ve(G+
� )qk(G+

� )

]
=

∑
G+

�⊆G

[
1

v
πG+

�
(�) +

q

v
(1 − πG+

�
(�))

]
ve(G+

� )qk(G+
� ) (7)

where πG′(�) denotes a projector on the black bonds defined as follows:

πG′(�) =
{

1 if � is a black bond

0 otherwise.
(8)

For the other partial sum we can write, more simply,

δ�

[ ∑
G−

� ⊆G

ve(G−
� )qk(G−

� )

]
=

∑
G+

�⊆G

ve(G+
� )qk(G+

� ). (9)

From (3), (7) and (9) one obtains immediately

1 = v + q

v
〈ρ(�)〉 − q − 1

v
〈π(�)〉 (10)

where 〈ρ(�)〉 = ∑
G+

�
P (G+

� ), with P(G′) = ve(G′)qk(G′)/ZG(q, v).
Summing over all the edges � = 1, 2, . . . , n ≡ e(G) yields

n = v + q

v
〈e〉 − q − 1

v
〈b〉 (11)

where 〈e〉 = ∑
G′ e(G′)P (G′) is the mean number of edges of G′, called active bonds, and

similarly 〈b〉 = ∑
G′ b(G′)P (G′), where b(G′) is the number of black bonds in the subgraph

G′. This is the first Ward identity. Since 〈e〉 is related to the internal energy E according to

E ≡ −∂ log ZG

∂β
= −v + 1

v
〈e〉 (12)

we can rewrite the above identity in the form

−E = v + 1

v + q
e(G) +

(q − 1)(v + 1)

v(v + q)
〈b〉 (13)

which gives the internal energy E in terms of black bonds. This illustrates a common feature
of this kind of Ward identity: all the thermal properties of the model are encoded in the black-
bond configurations, as we shall see shortly. The fact that the energy counts this special kind
of bonds has been already observed some time ago [11].

As a little diversion, let us remark that if G were a tree T , then b(T ) ≡ b(G′) ≡ 0. This
leads to E = − v+1

v+q
e(T ), which is a well known result of the q-state Potts model on any tree

with sub-exponential growth [10]; it also holds in the symmetric phase of any Bethe lattice.
It is also interesting to study equation (11) in the pure percolation limit q → 1. Taking

this limit together with the Taylor expansion of 〈e〉

〈e〉 = ve(G)

v + 1
+ (q − 1)[〈ek〉 − 〈e〉〈k〉]q=1 + · · · (14)

yields the curious identity

〈e − b〉q=1

v + 1
= [〈e〉〈k〉 − 〈ek〉]q=1 (15)

relating the mean number of bridges to the connected correlator between edges and clusters.

4 This way of reasoning is very similar to the one used to describe the basic properties of the Tutte polynomial of a
graph [8], which is a simple variant of the partition function (2); see also [9].
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Other Ward identities can be simply obtained by applying the above Z2 transformation
to more than one edge. In particular, the two-edge transformation leads to the following
expression of the specific heat C = ∂E

∂T
in terms of black bonds:

C

β2
+ E +

E2

e(G)
= (q − 1)(v + 1)2

v(v + q)

{
2〈h〉 + (q − 1)

[
〈b2〉 − 〈b〉2 − 〈b〉

n
(n − 〈b〉)

]}
(16)

with 〈h〉 = ∑
G′ h(G′)P (G′), where h(G′) denotes the number of the cutting pairs of the

spanning subgraph G′, i.e. the pairs of black bonds such that their deletion increases the
number of clusters.

3. Cutting the bridges

We come now to the other purpose of this paper, namely to show that not only the internal
energy or the specific heat, but also any correlation function involving an even number of sites,
may be evaluated in terms of black-bond configurations B(G′), i.e. the graphs generated by
deletion of all the bridges in the spanning subgraphs. To this end it is convenient to slightly
generalize the model in the following way: we assign to any oriented edge 〈ij〉 of G a twist,
namely an integer τij = 0, ±1, . . . ,±(q − 1) and define a modified Hamiltonian

Hτ = −
∑
〈ij〉

δσi ,σj +τij
(17)

where the sum σi + τij is taken modulo q. An edge 〈ij〉 with τij �= 0 is said to be twisted. In
order to obtain the FK representation of the twisted partition function ZG,τ = ∑

{σ } e−βHτ , we
can rewrite it as

ZG,τ =
∑
{σ }

∏
〈ij〉

(1 + vδσi ,σj +τij
) (v = eβ − 1) (18)

and expand the product as a sum of terms corresponding to the possible choices of summand
from each factor. Each edge of the graph G can appear with a factor unity or vδσi ,σj +τij

; in the
latter case the edge is said to be an active bond. In a term with e(G′) active bonds we have a
factor ve(G′) together with a product of delta functions which forces to zero every configuration
G′ in which all the spins connected by the active bonds do not satisfy the constraint δ = 1. If
there are no twists in G′ this constraint implies that all the spins of each cluster are aligned
and the total number of spin configurations in a situation in which G′ is formed by k(G′)
clusters is qk(G′). If, on the contrary, there are twisted edges on G′, we obtain a non-vanishing
contribution only if there are no frustrations, namely if and only if the algebraic sum of the
twists along any circuit of G′ is zero modulo q. In order to select these subgraphs let us
introduce a projector �τ(G

′) defined as

�τ(G
′) =

{
1 if G′ has no frustrations

0 otherwise.
(19)

Note that this projector picks out a subgraph G′ regardless of the location of its bridges; thus
it can only be a function of the black-bond configurations B(G′):

�τ(G
′) = �τ(B(G′)). (20)

In terms of this projector we have

ZG,τ ≡
∑
{σ }

e−βHτ =
∑
G′⊆G

�τv
e(G′)qk(G′) (21)
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which leads to the fundamental identity
ZG,τ

ZG

= 〈�τ 〉 (22)

where the expectation value is taken with respect to the standard, untwisted Hamiltonian. This
defines a (complete) set of physical observables, one for each choice of τ , which depend only
on the black-bond configurations and probe the linking properties of the FK clusters.

Thus the problem reduces to showing that any even correlation function can be expressed
in terms of suitable combinations of �τ . This can be done, at least in principle, by writing the
expectation value (22) in terms of spin variables

〈�τ 〉 =
∑

{σ } e−βHτ∑
{σ } e−βH =

〈
exp

[
β

∑
〈ij〉

(δσi ,σj +τij
− δσiσj

)

]〉
(23)

and then expanding the exponential. As examples, it is easily verified that a single twisted
edge generates the first Ward identity (11) and the two-edge twist yields equation (16).

Note that equation (23) has the typical form of the expectation value of correlators of
disorder observables [12]. Measuring disorder observables is not an easy task: one needs
expectation values of operators which are exponentially suppressed on dominant configurations
of the statistical ensemble. In particular, the numerical evaluation of operators involving a large
number of twisted links represents a very hard sampling problem. Actually equation (20)
yields a simple, effective way out. Indeed �τ(B(G′)) is an improved estimator of the same
observable. The evaluation of �τ on the black-bond configurations is much less noisy than in
the spin configurations, because in the former case �τ can only take the values zero and unity,
while in the latter case the exponential of spin variables has a much larger variance, especially
for large distance correlators. As a matter of fact, powerful algorithms to evaluate these new
estimators have been constructed for the surface tension in the 3D Ising model [13] and for
the Wilson loops Polyakov correlators in the 3D Z2 gauge model [14, 15]. Their extension to
a general q-state Potts model is now straightforward.
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